
Journal of  Statistical Physics, Vol. 75, Nos. 5/6, 1994 

Phase Ordering Dynamics in a Gravitational Field 
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We study the dynamics of phase ordering in the presence of an external 
"gravitational" field, namely a field that varies linearly with distance in one 
direction. Starting from microscopic considerations, we motivate reasonable 
phenomenological models for cases with nonconserved and conserved order 
parameter. We present detailed numerical results from our model for the case 
with conserved order parameter. 

KEY WORDS: Phase ordering dynamics; gravitational field; master equation 
approach. 

1. INTRODUCTION 

Much attention has focused on the dynamics of ordering of a homogeneous 
mixture of two phases which has been rendered thermodynamically 
unstable by quenching below the bulk critical temperature T, (for reviews 
see refs. 1). It is now well accepted that the growing domains are charac- 
terized by a unique, time-dependent length scale L ( t ) ~  t ~ (where t is the 
time) and the growth exponent ~b depends on whether or not the order 
parameter is conserved. The determination of ~b for pure isotropic systems 
has been so demanding computat ional ly t~) that considerably less attention 
has been paid to more realistic situations. One of the realistic problems 
that has been studied is the effect of a gravitational field on phase ordering 
dynamics for the case with conserved order parameter but with no 
hydrodynamic  effects. ~2'3~ However, for reasons which we describe shortly, 
previous studies suffer from certain inadequacies. In this paper, we use a 
master equation ,approach ~41 to motivate reasonable phenomenological  
models for phase ordering dynamics in a field which varies linearly in one 
direction (e.g., gravity). We study both the cases with nonconserved and 
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conserved order parameter, and the resultant model for the conserved case 
hasd the same static solution as the nonconserved case--an important 
check on the reasonableness of our model. At the outset, we should 
emphasize that it is not our intention to propose the master equation 
approach as a rigorous means of deriving coarse-grained models from 
microscopic considerations. The approximations involved are too drastic to 
support any such contention. However, we do believe that, if properly 
used, the master equation approach can serve as a good guide to obtain a 
reasonable phenomenological model in physical situations when such a 
model is not immediately obvious, e.g., a binary mixture in contact with a 
surface which has a preferential attraction for one of the components, tS~ 

Existing phenomenological models t2~ for the dynamics of segregation 
of a binary alloy in a gravitational field (and for the closely related 
problem of driven, diffusive systems ~61) lead to a rate equation for the 
order parameter which is usually of the form (in terms of dimensionless 
quantities) 

a I,,tl [ 
a - - - T - -  - v  �9 Mi~b) V (1) t)/ I 

where r t) is the order parameter at point r and time t; M(~b) is an order- 
parameter-dependent mobility; and F{~b} is a coarse-grained free-energy 
functional, usually of the form 

- 1 f{~(r, l) } : f dF(sgn( 2 Tc) ~(F, I)2q-~ ~(F, I)4d-~ (v~(F, t))2) 

- G f dr z~(r ,  t) (2)  

In (2), the first three terms terms are the customary ~b 4 free-energy terms. 
The last term incorporates the gravitational field (presumed to act in the 
z direction), whose strength is proportional to G. In the Cahn-Hilliard 
equation, one usually sets M(~b)= M, i.e., the mobility is order-parameter 
independent. However, if one does this in (1), it has the unfortunate conse- 
quence of omitting the gravitational field from the equation. Previous 
studies t2~ have argued that if the mobility is taken to depend on the order 
parameter, this will have the effect of retaining the gravitational field. We 
find this argument somewhat unsatisfactory because it suggests that the 
order-parameter dependence of trhe mobility is the cause for the action of 
the gravitational field--though there is no physical relation between the 
two effects. We do not dispute the order-parameter dependence of the 
mobility ~71 or, for the matter, the appearance of gravitational effects 
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through similar terms. However, we believe that the two should be treated 
as being unrelated--something which has not emerged clearly in previous 
studies, c2~ Second, the static equilibrium solution for both the noncon- 
served and conserved cases should be identical because thermodynamic 
equilibrium is independent of the dynamics. This requirement appears to be 
respected by (1), where we see that 6F{(~}/6(~(r, t ) = O  (i.e., the condition 
for equilibrium in the nonconserved case) also gives rises to a static solu- 
tion for the conserved case. However, the form of the phenomenological 
free energy in (2) results in the following equation for the static solution 
~S(r): 

- s g n ( T -  To) ~bS(r) - ~ S ( r ) 3  + Vz~b'(r) + Gz = 0 (3) 

Equation (3) is clearly unreasonable for z ~ +oo and we would have to 
add an extra saturation term to make the solution well-controlled as 
Z---+ q -O0 .  

In this paper, we apply the master equation approach to obtain 
reasonable phenomenological models for both the nonconserved and 
conserved cases. In previous work ~3~ we have motivated (from the master 
equation approach) a phenomenological model for the conserved case. 
However, that model is appropriate only for early to intermediate stages of 
phase separation under gravity (or driven diffusive systems~6~), because it 
gives reasonable results only with periodic boundary conditions in the z 
direction. These are obviously unsatisfactory for studying the late stages of 
phase separation under gravity. We should also add that, in our present 
study, the nonconserved case is not particularly interesting physically as it 
corresponds to the un usual situation of a magnetic field that varies linearly 
in the z direction. However, our study of the nonconserved case is useful 
as it yields the static solution with appropriate boundary conditions, which 
one must obtain in the conserved case also. 

This paper is organized as follows. Section 2 is devoted to the deriva- 
tion of phenomenological models for both the nonconserved and conserved 
cases. In Section 3 we present numerical results from a simulation of our 
model for the conserved case. Section 4 concludes with a summary and 
discussion. 

2. P E N O M E N O L O G I C A L  M O D E L S  FOR N O N C O N S E R V E D  A N D  
C O N S E R V E D  CASES 

The starting point of our modeling is the Hamiltonian for a nearest- 
neighbor Ising model in a site-dependent field, 

~ '  = - J  ~. s,sj - ~. h,sj (4) 
( i . j )  i 
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where J is the strength of the exchange interaction between spins s; (which 
take values + 1 corresponding to wether the spin at site i is "up" or "down" 
or whether site i is occupied by an atom of species A or B); and h i is the 
field at the site i. For simplicity of presentation and for the purpose of 
obtaining the structure of the order parameter equation, we confine our- 
selves to the one-dimensional (1D) case, initially. The generalization to 
arbitrary dimensions is straightforward. First, we consider the noncon- 
served case, namely we associate Glauber (or spin-flip) dynamics with the 
Ising model. The standard procedure for finding the time evolution of the 
order parameter (in this case, an average "magnetization") ( s , )  (where 
the average is over spin configurations) from a master equation is well- 
documented in the literature ~4~ and we do not go into it again here. The 
resultant equation in the mean-field approximation is 

zs "~ (sk ~ = -- (Sk )  + tanh J( (s~ + l ) + (SkT - 1 ) ) + gka (5) 

where z~ is the time scale which characterizes a spin flip. In (5), we have 
put hk = gka, where g is the strength of the gravitational field; k is the layer 
index; and a is the lattice spacing. We can now identify ( sk )  as the order 
parameter ~(z, t) (where z = k a )  and Taylor expand (Sk+~) to obtain 

L. ~ ~b(z, t) = -~b(z, t) + tanh ~(z,  t) -~ T Oz 2 + (6) 

where we have introduced the mean-field critical temperature To =q  J, 
where q is the coordination number of a site. In (6), we introduce rescaled 
variables as 

/ T "x 1/2 
Z t - -  _ _  

t 
(7) 

to obtain the dimensionless equation (dropping the primes) 

dt = - r  t) + tanh ~(z, t) + 02r t) 
02.2  "1- G Z  ( 8 )  

where we put G =  (g /T) ( ja2/T)  1/2. At this stage, it is customary t41 (when 
G = 0) to Taylor expand the "tanh" function assuming that its argument is 
small and thus recover the time-dependent Ginzburg-Landau (TDGL) 
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equation. However, we cannot do this in our case because of the explicit 
z dependence of the argument of the "tanh" function. Thus, we will 
consider (8) itself to be reasonable phenomenological model for noncon- 
served phase ordering dynamics in a "gravitational" (linear in space) field. 

The static solution CS(z) of (8) is found by putting O/Ot=O to obtain 
the implicit equation 

~bS(z) = tanh [-~-~bS(z) +~+d2r Gz I (9) 

with the boundary conditions ~b~(_+ ~ ) =  +1. An immediate consequence 
of (9) is that the static solution has the form q~(z)~-tanh(Gz) as z ~  _+m. 
Thus, the system orders for large [zi, regardless of the value of T. Higher 
values of T only increase the width of the interface between the spin-up and 
spin-down regions, as is natural. Equation (8) easily generalizes to 
arbitrary dimensions, where it has the form 

0---7 - r t ) + t a n h  r t)+V2r t)+Gz (10) 

Next, we consider the more interesting case of conserved order 
parameter, namely we associate Kawasaki (or spin exchange) dynamics 
with the Ising Hamiltonian in (4). Again, the standard master equation 
prescription ~3'4~ yields the following equation (in one dimension) for (Sk) 
in the mean-field approximation: 

O 

= - - 2 ( S ~ ) + ( S k + , ) + ( S k _ , ) +  ~ [1-- (Sk)(Sk+.)]  
n =  + 1  

xtanh (Sk+l)+(Sk--l)+-'-)----(Sk)--(Sk+z, ,)  g(k n)a 

(ll) 

where r,. is the characteristic time scale of a spin exchange; and we have 
again set hk = gka. Equation ( 11 ) is easily confirmed to have the same static 
solution as the nonconserved case. Introducing the short-hand notation 
AQp = (J/T)[(sp+ t ) + (sp_ l ) +gpa/J], we can rewrite Eq. (11 ) as 

2% ~ (Sk) = -- (Sk) + (Sk+,)  + (Sk - , )  

+ 5-" I-1-  (Sk)(Sk+.)] tanh(Ak--Ak+,,) (12) 
n =  + 1  

822/75/5-6-5 
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Clearly, we can add or subtract zero from the right-hand side of (12) 
without changing the equation. Thus, we rewrite (12) as 

= --2(Sk> +(Sk+l> + (Sk--I> + [1-- (,Sk>(,Sk+l) ] tanh(Ak--Ak+l) 

+ [1 -- (Sk>(,Sk_ l>] tanh(Ak-  Ak_~ )--2['1 -- (Sk) 2] tanh(Ak-  Ak) 

(13) 

where the last term on the right-hand side (which is identically zero) is 
introduced so as to enable us to identify the last three terms on the right- 
hand side as a discrete Laplacian. 

As before, the continuum limit is obtained by identifying (Sk) --~b(z, t). 
Then, we can coarse-grain the first three terms on the right-hand side of (13) 
a s  

- - 2 ( S k ) + ( S k + l ) + ( S k _  )=a 202d?(z' Ot 2 t) + O(a4 ) (14) 

The other three terms in (13) are coarse-grained by introducing the discrete 
function 

fk.,, = - [1 - ( s , > ( s , > ]  t anh (Ak-A, )  (15) 

and identifying 

fk.k + fk.k --2fk.k =azo2f(z'x) +' - '  ~X2 x= : + O(a') (16) 

where 

f(z, x)= [1 - ~b(z, t) ~b(x, t)] tanh[A(z, t )-A(x,  t)] 

1 A(z, t)=-~(~(z +a, t)+ fb(z-a, t)+ j )  
(17) 

Using (17), we obtain from (16) 

fk., + 1 + f k . k - I -  2fu.k 

=_alO{[l_fb(z, t)2] O [_~ IT,. 2O2tb(z,t) gz ]}  
z -~z qk(z,t)+~--fa Oz 2 + - ~ +  O(a') 

(18) 
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We should emphasize that (18) has been obtained without invoking a small- 
argument expansion as is the case in "derivations" of the phenomenological 
Cahn-Hilliard equation using the master equation approach. (4) Combining 
the results from (14) and (18), we have a phenomenological equation for the 
case with conserved order parameter as follows: 

2zsO~(z,t)=a2O2~(z,t) a2O{ 0 [ ~  at az ~ ~ Ozz [1 -~b(z, t) 2] ~z ~b(z, t) 

-~-a + (19) 

To obtain (19), we should emphasize that we have retained all terms of 
O(a2); selectively retained only some terms of O(a4); and neglected all 
higher-order terms. The inconsistency in our choice of O(a 4) terms and 
neglect of all higher-order terms is the reason we refer to the arguments 
above as a "guide to good phenomenology" rather than as a "derivation." 
Finally, we rescale variables as 

_{ T'~ 1/2 
z'-\j-~a2] a 

(20) 
T t ' = - - I  2z,Y 

and obtain the following dimensionless equation for the case of conserved 
order parameter in a gravitational field (dropping the primes): 

Ofb(z,t) 02 rfTc_ 1) ~---ml T,. O2~(z,t!] 
Ot oz Lk r O(z, Oz 

O [ O3fb(z,t) ] 
+O-zz ~b(z' t)2 Oz 3 FGqk(z't)2 (21) 

where G = (g/T)(Ja2/T) m. Equation (21) is the central result of this paper. 
Notice that it is similar to the Cahn-Hilliard equation but with two addi- 
tional terms, the second of which is due to the gravitational field and is 
similar in form to previously proposed modifications of the Cahn-Hilliard 
equation to account for the gravitational field/2'3) These extra terms may 
be interpreted as arising from an order-parameter-dependent mobility 
M(~b) = 1 -0t~b 2 in (1), where ct is some constant/2) However, (21) contains 
only a few of the many terms generated by such an assumption. Further- 
more, as is easily confirmed, the choice of terms in (21) ensures that (8) 
and (21) have the same static solutions. This is an essential check on the 
reasonableness of any phenomenological model for the conserved case. 
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Equation (21) easily generalizes to that case of arbitrary dimensions 
and has the form 

3~b(r,3t t) V2[(T_~_l)~(r,t)_~_~(r, 03 + V2~(r, t) 1 

+ V. [~b(r, 02 V(V2~b(r, t)) + G~b(r, t)2/~] (22) 

where/~ is a unit vector along the z direction. 
It is interesting to note that Eq. (22) can be recast in the form of 

Eq. (1) by identifying M(~b)= 1 - ~ 2  and the free energy 

F{~b} = HF{qk} + H,{~} (23) 

In (23), the free part Hv{cb} is the entropy of a noninteracting binary 
mixture ~s) 

HF{~b} : f d r  �89 + ~b(r, t)-I ln[1 + ~b(r, t)] + [1 -~b(r, t)] In[1 -~b(r, t)]} 

(24) 

and the interacting part H~{~b} is 

H t { qk } = f dr { - ~l Tc--T 21 ~b(r, 0 2 + [V~b(r, t)] 2-  Gz~(r, t ) j  (25) 

Unfortunately, the corresponding nonconserved equation (10) cannot be 
formulated as a TDGL equation with the above form for F{~b}. However, 
it is easy to see the TDGL equation obtained as Oqk(r,t)/3t= 
-6F{~b}/&b(r, t) has the same static solution as (10) and constitutes a 
reasonable model for the nonconserved case as such. 

Before we proceed to describe our numerical results, we should sum- 
marize our modeling. In this section, we have motivated phenomenological 
models for phase ordering dynamics in a gravitational field. Our modeling 
provides us with certain advantages. First, our modeling clearly delineates 
the roles of order-parameter-dependent mobility and the gravitational field. 
Second, our models for the nonconserved and conserved cases provide a 
consistent description in that they have the same static solution and this is 
obtained without introducing any artificial saturation terms into a 
phenomenological TDGL equation. Third our modeling improves on pre- 
vious master-equation-based approaches to phase ordering dynamics 14) in 
that we do not invoke proximity to the critical temperature to make small- 
argument expansions. (Of course, there are still enough approximations 
that we cannot claim to have "derived" our models from microscopic 
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considerations.) We do not claim that our model for the conserved case is 
in a different dynamical universality class form extant works, t2'3) However, 
for the reasons mentioned above, we believe that our modeling clearly 
elucidates the role of gravity in phase ordering dynamics. 

3. N U M E R I C A L  RESULTS 

We have numerically simulated (22) in two dimensions using simple 
Euler discretization on a lattice of size Lx x L: with mesh sizes At = 0.05 
and Ax = 1.0. We present here results for Lx = 128 and L~ = 512. Periodic 
boundary conditions are applied in the x direction, which is the smaller 
dimension and is perpendicular to the direction of the gravitational field, 
i.e., the z direction. The appropriate boundary conditions in the z direction 
are determined from the static solution, which we know from (9). Recall 
that qJ~(e)~-tanh(Gz) as z ~  +c~. This would mean that d~(z) /dz  ".. 
G ( I - ~ P ( z )  2) as z ~ +oo and we fix the first pair of boundary conditions 
for our simulation as 

Oq~(Z,oz t) --= o.L: = G(1 -q~Z(z, t)) I.-=o.c.. (26) 

The second pair of boundary conditions is determined by taking the 
derivative with respect to z of (9) to obtain (for z--* +oo) 

d3~S(z) Tc a~S(z) 1 cW(z) 
dze --------~ t- T dz 1 -qk~(z) z dz G (27) 

The second pair of boundary conditions, consistent with (26) and (27), is 
then 

O3(b(Z,oz 3 t) -- =O,L: = _ T__~T G(1 -~b(z, t) 2) ~=O.L: (28) 

Thus, the boundary conditions we specify for our simulation correspond to 
the known equilibrium solution. Notice that, for large Izl, the values of 
~b(z, t) rapidly saturates out to + 1 and the boundary conditions (26) and 
(28) reduce to 

O~b(z, t) ~ -~ 0 

OZ = O, L: 

C~30~(Z, t) z=O,L- Oz 3 "~ 0 
. 

(29) 
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The initial conditions for our simulation consist of uniformly dis- 
tributed random fluctuations of amplitude 0.05 around a zero background, 
i.e., the so-called critical quench. All results for real-space correlation func- 
tions presented below are averages over 200 different initial conditions. 

First, we describe our results for temperatures T >  To, assuming that 
the gravitational field is switched on at time t = 0. Our numerical results 
(not shown here) indicate that a layer rich in the lighter component (say 
A, with # = I) forms at the top of the system, whereas a layer rich in the 
heavier component (say B, with r  forms at the bottom of the 
system. Fronts between the ordered (r +1) and disordered (~b~0) 
regions move toward the center of the system and finally coalesce so that 
there is only one interface between the lighter ~tnd heavier components. The 
speed of these fronts can be determined by looking for a traveling wave 
solution of (21) as ~(z, t) = (~(z-- vt) - (~(q). This yields (after integrating 
once with respect to q) 

- v ~ ( q ) = - ( - ~ - 1 )  ~d~b(r/) +--~ ~b(r/)2 d~d~) d3~b(r/)dr/3 

,2 d3q~(q) 
(30) 

where K is a constant of integration. To obtain a front solution between 
- 1 at q-- - o o  and 0 at q = oo with all derivatives of ~(q) vanishing, we 
must have v = G, which is the velocity of the front between the heavier 
component and the disordered region. Similarly, the velocity of the front 
between the lighter component and the disordered region is - G .  Our 
numerical simulations are consistent with this. 

Next, we describe our results for T <  T,., where the system undergoes 
spinodal decomposition in the bulk and it is of some interest to see how the 
gravitational field interferes with spinodal decomposition. Results described 
here are for the parameter values To~T= 2.0 and H = 0.1. Results similar to 
those described here are obtained for a wide range of parameter values, 
with the only difference being in the coefficients of growth laws. 

Figure 1 shows the evolution pictures from our simulations of (22) 
with the boundary conditions (26) and (28). Regions rich in the lighter 
component (~ >0 )  are marked in black and regions rich in the heavier 
component ( ~ < 0 )  are not marked. Evolution pictures are shown for 
dimensionless times ranging from t =  800 to t =4000. As in the case T >  T o 
layers rich in the lighter and heavier components are formed at the top and 
bottom, respectively, and these grow rapidly. The central region, which 
shrinks as the enriched layers grow, is comprised of domains of A and B 
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which  b e c o m e  highly  an i so t rop ic  in t ime, cons ide rab ly  e longa t ed  in the 

d i rec t ion  of  gravi ty .  (2"3) F igu re  2 shows  cross  sect ions (at  x =  64) of  the 

o r d e r - p a r a m e t e r  profi le  a long  the z d i rec t ion  c o r r e s p o n d i n g  to the evo lu -  
t ion pic tures  s h o w n  in Fig.  1. 

W e  next  focus on  the  rea l -space  co r r e l a t i on  funct ions.  Because  of  the 

intr insic  a n i t r o p y  of  the system, we cons ide r  co r r e l a t i on  func t ion  in b o t h  

the x and  z di rect ions .  The  co r r e l a t i on  func t ion  in the zs di rec t ion  is 
def ined as 

1 IO "x I "B(t) 
az' ( ( ~ ( x , z ' , t ) q ~ ( x , z ' + z , t ) )  (31) Sire(z, t ) = ~  dx JA,, ' 

where  the  subscr ip t  " in t "  refers to in t eg ra t ion  a long  the x di rect ion.  In  (31), 

the l imits  of  the z' i n t eg ra t ion  are  chosen  so as to exc lude  z '  and  ( z ' +  z) 

values  which  lie in the  enr iched  layers.  T h e  n o r m a l i z a t i o n  fac tor  is 

Fig. 1. Evolution pictures obtained from an Euler-discretrized version of our model for the 
conserved case with a gravitational field [Eq. (22)] in two dimensions. The gravitational field 
is taken to act along the z direction. Parameter values are Tc/T= 2.0 and G = 0.1. The dis- 
cretization mesh sizes are 3t=0.05 and Ax= 1.0 and the system size is L,.xL:,  where 
L, = 128 and L. = 512. Periodic boundary conditions are applied in the x direction and the 
boundary conditions derived from the known static solution I-Eqs. (26) and (28)] are applied 
in the z direction. Tile initial conditions for our simulation consist of uniformly distibuted 
random fluctuations of amplitude 0.05 around a zero background, corresponding to a critical 
quench. Sites with positive order parameter (corresponding to the lighter component) are 
marked in black and sites with negative order parameter (corresponding to the heavier com- 
ponent) are not marked. Pictures shown are for dimensionless times t = 800, 1600, 2400, and 
4000. 
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N= Lx(B(t)--A(t)) and the angular brackets denote an averaging over 200 
independent initial conditions. An analogous definition holds for Sint(X, t), 
with the subscript "int" referring to an integration along the z direction, 
excluding the enriched layers. If we assume that there are unique length 
scales of domain growth in the x and z directions, then the real-space 
correlation function should exhibit generalized dynamical scaling (3'9) as 

S(x ,  z, t) = S(x /L , . ( t ) ,  z /L : ( t ) )  (32) 

where Lx(t) and L~(r) are characteristic domain sizes in the x and z direc- 
tions, respectively. Equation (32) implies that the quantities defined above 
should independently exhibit dynamical scaling as follows: 

Sint(Z, t) = S l ( z /L= ( t ) )  

Si . t (x ,  t) = S2(x /L . J t ) )  
(33) 

1.0 
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Fig. 2. Cross-section profiles of the order  paramete r  for the tempora l  evolut ion shown in 
Fig. 1. The cross sections are taken at  x = 64 and we plot ~ (x  = 64, z, t) vs. z for d imensionless  
t imes t = 800, 1600, 2400, and 4000. 



Phase Ordering Dynamics in a Gravitational Field 851 

We define characteristic length scales as the distances over which the 
appropriate correlation functions decay to half their maximum values, i.e., 

Sint(0 , t)  
Sint(tz(t),/) = - - - - - - - ~  

aint (0 , t)  
Si,t(L,.(t), t) = ------~--- 

(34) 

Figure 3a shows the real-space correlation function in the z direction 
Si,t(z, t) vs. z for dimensionless times t=800,  1600, 3200, and 4000 
(denoted by the symbols indicated). The slow decay of the correlation func- 
tion is indicative of the large characteristic domain size in the z direction. 
Furthermore, the shape of the correlation function is very different from 
that in the usual Cahn-Hilliard domain growth, where the correlation 
function has a markedly oscillatory behaviour, c~~ Figure3b tests for 
dynamical scaling of Si,t(z, t) by superposing data for Sint(Z, t)/Sint(O, t) VS. 
z/L_.(t) from the different times shown in Fig. 3a. Apart from the earliest 
time in the figure (i.e., t = 800), the data collapse rather well onto a single 
master curve, suggesting that dynamical scaling holds, at least in the z 
direction. 

Figure 4a shows the correlation function in the x direction Si,~(x, t) vs. 
x for dimensionless times t =  800, 1600, 3200, and 4000 (denoted by the 
symbols indicated). These correlation functions are reminiscent of the 
oscillatory form for the case without gravity. r176 Figure 4b tests for dynami- 
cal scaling by plotting Si.t(x, t)/S~,t(O, t) vs. x/L.,.(t) for the various times 
from Fig. 4a. In this case, the data collapse is not good and dynamical 
scaling appears to break down in the x direction. 

Finally, we show the characteristic length scales as a function of time. 
Figure 5a shows the characteristic domain size in the z direction L:(t) 
plotted as a function of time t. The data exhibit an approximately linear 
growth up to about r ~ 2500 and then there is a saturation which probably 
signals the onset of unphysical freezing effects. Figure 5b shows the 
"characteristic domain size" in the x direction Lx(t) plotted as a function 
of time t. (We use the quotes because, in the absence of clear dynamical 
scaling, our definition for the length scale will also include the slow 
modulation in time of the correlation function.) In this case, we do not see 
any extended growth regime at all--possibly a result of coupling to the 
extremely rapid growth in the z direction. As a matter of fact, the growth 
is so limited and so badly affected by freezing that it is not possible to 
extract even an approximate growth law in the x direction for any 
reasonable period of time. 
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Before we end this section, it is useful to compare our results with 
previous studies (in two dimensions) which have also considered the con- 
served case under gravity in same detail. The first study we focus on is an 
earlier one by us c3~ where we considered the equation (in dimensionless 
units) 

O~(r, t) 

dt 
VZEr t ) -  r 0 3 +  V2~(r, t)] 

& a3~(r, t) 
+z-- I-Gr t) 2 ] + Gr t) az 3 02 

(35) 

Equation (35) was also motivated using the master equation approach, but 
was the result of a small-argument expansion at an intermediate stage of 
the calculation. It does not have the correct static solution as obtained 
from our nonconserved equation (10). In ref. 3 we considered the momen- 
tum-space structure factor, which was possible because we imposed peri- 
odic boundary conditions in both directions. Our numerical results in ref. 3 
suggested that the momentum-space structure factor exhibits generalized 
dynamical scaling for late times, though our results were not conclusive-- 
partly because of the quality of the ID data in the absence of spherical 
averaging. We also found that the shape of the structure factor showed 
strong anisotropy between the x and z directions and the growth in the z 
direction was much faster (approximately linear) than the growth in the x 
direction. The second study we discuss here is that of Yeung et al., c2~ who 
considered the equation (in dimensionless units) 

Or t ) =  
-VaEff(r, t ) - ~ ( r ,  t)3 .q_ V2~(r, t)] +~z  [Gff(r, t)2-1 (36) 

0t 

Equation (36) was motivated from a phenomenological argument based on 
an order-parameter-dependent mobility [ ' M ( r 1 6 2  2] in (1). This 
equation also does not possess a static solution of the form suggested by 
our nonconserved equation (10). The simulation of Yeung et aL ~21 was also 
with periodic boundary conditions and they considered both momentum- 
space structure factors and real-space correlation functions. Their real- 
space structure factors appear to exhibit reasonable dynamical scaling in 
the z direction but not in the x direction (analogous to our results here). 
Again, they find a much faster domain growth in the z direction (growth 
exponent r ~ 0.8~3.9) than in the x direction. 

The above comparisons lead us to believe that our conserved equation 
(22) is not in a different dynamical universality class from previously 
suggested models. (Of course, thorough investigation is needed before a 
conclusive statement can be made to this effect.) However, as we have 
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already stressed, our present "derivation" and model have important 
advantages over previous works. 

4. S U M M A R Y  A N D  D ISCUSSION 

Let us briefly summarize the major results in this paper. We have 
applied the master equation approach to obtain coarse-grained models for 
systems with nonconserved and conserved order parameters in a field 
which varies linearly in one direction, i.e., a gravitational field in the z 
direction. We do not use a small-argument expansion in our "derivation," 
as this is not at all justifiable in the context of a field that goes to _ oo as 
z ~ + ~ .  The models we obtain are consistent in that both the noncon- 
served and conserved cases have the same static solution. Furthermore, 
our treatment carefully delineates the separate roles of order-parameter- 
dependent mobilities and the gravitational field. 

We use simple Euler discretization to simulate our models and obtain 
real-space correlation functions as averages over a large number (200) of 
initial conditions so as to improve the quality of our ID data. Our results 
demonstrate that there is reasonable dynamical scaling in the direction of 
gravity, but there appear to the violations of dynamical scaling in the per- 
pendicular direction. Furthermore, the growth in the direction of gravity is 
much faster than that in the perpendicular direction. Our results are in 
broad agreement with numerical results from previous studies of different 
models, leading us to believe that all these models are in the same dynami- 
cal universality class. 

Finally, we should remark that gravitational effects are not expected 
to be so pronounced in binary alloys, where strain effects due to lattice 
misfits are more dominant. They are far more important in the context of 
the segregation of binary fluids, t' j~ In the absence of gravity, the qo-called 
model H has been successfully used to describe the critical dynamics of 
binary fluids. ~121 This model consists of two coupled partial differential 
equations, one for the order-parameter field and the other for the 
hydrodynamic velocity field. The equation for the order parameter is the 
Cahn-Hilliard equation along with a coupling to the fluid velocity field. 
The equation for the velocity field is essentially the Navier-Stokes equation 
with a coupling to the order-parameter field. Both these equations are 
easily adapted to the case with gravity in a fashion analogous to what we 
have done above. Of course, the simulation of hydrodynamic effects is 
numerically very demanding because of the large system sizes needed ~'3~ to 
account reasonably for long-ranged hydrodynamic effects. We will present 
details of our numerical numerical studies of model H with a gravitational 
field elsewhere. 
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